
System of Equations 

 

1. Solve: (a)   (b)   (c)   
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2. Find the constants α and β such that the system of equations  has infinitely many solutions. 
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3. Consider the following system of linear equations   (*) .   
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Suppose λ is an integer and  (*)  has nontrivial solutions.  Find λ and solve  (*) . 

4. (a) Find the value of the determinant 
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 where p is a real number. 

(b)    Consider the following system of equations: 
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 (i)     Find  p  such that  (E)  has a unique solution and find this solution. 

 (ii)    Find  p  such that  (E)  has infinitely many solutions.  In this case, solve (E). 

 (iii)   Does there exist any  p  such that  (E)  has no solution?  If your answer is ‘yes’, find it.   

 If your answer is ‘no’, give a brief explanation. 

 5. Find the condition for the equations:  (E) 
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 to have a common solution and show that when this condition is satisfied, the equations have infinitely many 

common solutions. 

 6. (a) Let A =  and  I = .  Evaluate  A⎟⎟
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 (b) Solve the system of equations   by using matrix method. 
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 7. Let  P = ⎟⎟
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(a)        Suppose a + b ≠ 2.  Show that there exists a unique real 1 × 2 matrix ( )yx   satisfying   
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 (b)       Let  I =  and  Q = , where  (x  y)  is the unique 1 × 2 matrix described in  (a) . ⎟⎟
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   Show that there exists a real number λ such that  P – Q = λ(I – Q) . 

Prove that  PP

n – Q = λn(I – Q)  for all positive integer n. 

 8. (a) If ab ≠ 6, find the inverse of  A = . 
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 (b) Discuss the solutions of the system of equations:   (E) . Solve it in various cases. 
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9. Consider the following system of equations :       ,    where c is real. 
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 Suppose the system is consistent, find  c and solve for  x, y, z. 

10. The system of equations :    has the trivial solution  
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 if and only if  x = y = z = 0. By considering the coefficient determinants of any 3 of the given 4 equations, 

 or otherwise, find the  necessary and sufficient conditions that the system has non-trivial solution(s). 

11.  (a) Evaluate :  
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(b) Let  , find  AB  and hence  A
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−αβ−β
αβ−αα−
βα−β−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

αβ
β

α
=

1
B,

0
01

01
A 2

2

-1. 

 (c) Show that the system of equations :     has a unique solution  if  αβ + 1 = β. 
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12. (a) Find the multiplicative inverse, in terms of a, of the matrix with real numbers: 
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≠ 0, –3.          

(b) If a and b are real numbers, solve   in  x, y and  z  in each of the cases:  
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 (i) a≠ 0, –3       (ii) a = 0    (iii) a = –3   

 

13. (a) Factorize the determinant 
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(b) If  p, q  and  r  are all distinct, show that  has unique solution.   
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 Hence, by using Crammer’s Rule or otherwise, solve  (E) . 

 (c) If  p 0 , solve  (E)  for the following cases: ≠

(i) p = q ≠ r 

  (ii) p≠ q = r   

 

14. Consider the system of linear equations 
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(a) If  (*)  has unique solution,  

(i)  find the value(s) of  p ;            

(ii)  solve for x, y and z in terms of  p  and  q .                    

(b) If  p = 0, 

(i)  find the value of  q  for  (*)  to be consistent;  

(ii)  solve the system of equations completely. 

(c)  If  p = 18, 

(i)  find the value of  q  for  (*)  to be consistent;  

(ii)  solve the system of equations completely. 
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